Siphonic Rainwater Systems

11.06.2020

Presented by: Remo Hirschi

Head of Procut Management \& Technical Sales Support Gulf Region
remo.hirschi@geberit.com

Objective

To differentiate between Gravity and Siphonic Rainwater drainage

Filling ratio

Pipe diameter

Geberit Pluvia

9 I/s Pluvia pipe $\varnothing 75 \mathrm{~mm}$
Only water

Conventional

$9 \mathrm{l} / \mathrm{s}$ conventional pipe $\varnothing 125 \mathrm{~mm}$

A Pluvia system has approx. $1 / 2$ diameter of a conventional system

Pipe layout

- Big number of downpipes
- Many installation ducts needed

- Less downpipes
- Reduced diameters
- Reduced installation ducts
- Faster completion of installation
- Faster activation of roof drainage system

The Pluvia system allows you a simple pipe layout

Stormwater network

- Extended and complex stormwater network
- Extensive excavation work
- Many penetrations through the foundation slab

Installation

- horizontal pipes need slope of 1-3\%
- large diameters

- no slope required
- smaller diameters, higher flexibility
- Freedom of planning

Material requirements

- Considerably more material
- Long installation time
- More storage space

- Lower material cost
- Long life HDPE- pipes and fitting
- Complete system incl. fastening material
- System warranty

Summary

- More roof outlets
- Larger pipe dimensions
- Pipe laying with slope
- Many stacks
- Complex underground pipes

- Less roof outlets
- Smaller pipe dimensions
- Architectonic freedom
- Reduced construction time
- Self- cleaning system due to high flow speed

The Pluvia system allows to drain large roof areas with few roof outlets and stacks

Agenda

Introduction to Geberit
How siphonic drainage differs to conventional
How does siphonic rainwater drainage work?
Elements of a siphonic system
Design of siphonic rainwater drainage
Summary

Functional principle of the Pluvia system

As soon as water enter the hose from the raised bucket, a pressure difference results between the bucket and outlet due to the water column in the system.

As a result, a negative pressure occurs in the pipe system, which causes the rainwater to be quickly sucked off the roof

The Pluvia system use physical principle of negative pressure

Hydraulic principles of Geberit Pluvia-System

1.) H_{T} is the engine of the Geberit Pluvia-System, $H_{T}=10 \mathrm{~m}$
2.) The higher H_{T}, the smaller the pipe diameter
3.) The smaller H_{T}, the bigger the pipe diameter

System overview

4. If within the manhole it must be vented

Part load conditions

Part load conditions

Full load conditions

 velocities.

Geberit Drainage Tower

Agenda

Introduction to Geberit
How siphonic drainage differs to conventional
How does siphonic rainwater drainage work?
Elements of a siphonic system
Design of siphonic rainwater drainage
Summary

Elements of a system

Roof outlets

Function disc stops air being drawn into the drainage pipes

Various types and capacities of outlet are available:
1-12 I/s and 1-25 I/s most commonly used

Pipes and Fittings

Cast Iron
Steel
HDPE

Fusion welding for greatest joint security

Impact and abrasion resistant

Ideal for prefabrication on/off site

Both heat and cold resistant

Safe and non-toxic (used in food industry)

Weatherproof and UV resistant

Lightweight - easy to handle

Installation savings in excess of 25% possible

High resistance to chemicals

Environmental benefits

Fastening system

- Quick installation
- Fewer ceiling fastening points
- Rigid installation requires no horizontal expansion compensation
- Simple prefabrication is possible
- One fastening type for anchor and support brackets

Fixing of the rail system

- Fewer Ceiling Fixing Points
- Quick and Simple Installation

Fixing of the rail system

Conventional Gravity Pipe work Fastening

Direction of expansion

Siphonic Rail fastening system

Rigid fixing
Rigid fixing
No horizontal expansion joints used

Fixing of the system

Spacing of brackets and expansion joints on vertical pipework

Design Service

System specific software designed to enable hydraulic calculations for even the most complex roof designs

- Roof layout and other relevant layouts
- Isometric drawings
- Hydraulic calculations
- Full material list including fixings
- Tender documentation including costings

Agenda

Introduction to Geberit
How siphonic drainage differs to conventional
How does siphonic rainwater drainage work?
Elements of a siphonic system
Design of siphonic rainwater drainage
Summary

Design overview

1. Calculation of the roof area
2. Determining the rainfall intensity

3. Volumetric flow of the roof area

4. Number and position of roof outlets

5. Defining the pipe routing
6. Design software schematic

Prerequisites

Information needed:

Roof plan / layout?
Section drawing?
Core position for the downpipes?
Roof type?
Any "no go" zones within the building?
Areas which might cause obstruction to the pipework

1. Calculation of the roof area

Flat roof

Pitched roof

Formula: Length x Width $=$ Roof Area in $\mathrm{m}^{\mathbf{2}}$
$40 \mathrm{~m} \times 22.5 \mathrm{~m}=900 \mathrm{~m}^{2}$

2. Determining the rainfall intensity

If the value for the rainfall is not known, it must be determined with the architect, MEP Consultant and possibly the building insurer. This value is based on the rainfall statistics from the local meteorological institute. The average rainfall per 10 minutes within ten years is recommended.

vic viaso	INut 7	ivic 4	ivuc 7	INuc 7	Nuct	ivuc 7
Precipitation, inches:						
Rainfall, Average Annual	4.3	4.6	3.9	2.8	0.9	3.2
Rainfall Maximum in 24 hours	3.9	2.8	2.0	3.0	0.5	3.1
Rainfall Intensity	Note 3					
Isokeraunic Levels (days lightning/year)	24	16	20	11	10	20

[^0]* Saudi Aramco Engineering Standard

* Dubai Municipality

2. Determining the rainfall intensity (Emergency)

$$
Q_{\text {NOT }}=\left(r_{(5,100)}-r_{D T} \cdot C\right) \cdot A / 3600
$$

Minimum discharge capacity of the emergency Overflows in litres per second
Rainfall in mm per hour and square meter that
must be expected once in 100 years
Calculated rainfall in litres per second and square meter (mm/hr)
Rainfall duration in minutes
Annularity of the rainfall event
Capacity factor
Effective precipitation area in m2

SLIDE 32

Geberit recommendation

Every roof drainage system can fail under third party influence, so we need an emergency system

Options

1. Oversize the system (not recommended)
2. Provide a secondary siphonic system with adapted outlets
3. Provide an internal gravity overflow system
4. Provide weir overflows through the parapet walls etc.
5. Allow the potential excess to temporarily build up on the roof.

3. Volumetric flow of the roof area

Formula: $\mathbf{Q R}=\mathbf{A x r x C}$

QR	Rainwater outlet $(1 / \mathrm{s})$
A	Roof area $\left(\mathrm{m}^{2}\right)$
r	Rainfall $\left(1 / \mathrm{s} \times \mathrm{m}^{2}\right)$
C	Capacity factor

Calculation roof area:
$40 \times 25=1000 \mathrm{~m}^{2}$

4. Number and position of roof outlets

Formula: total amount of rainfall in $1 / \mathrm{s}$
$\frac{\text { discharge capacity per outlet I/s }}{=} \quad$ number of outlets (always rounding up!)
Calculation number of outlets: $\frac{30.0 \mathrm{l} / \mathrm{s}}{12.0 \mathrm{l} / \mathrm{s}} \quad=2.5=>$ Total 3 outlets of $10.0 \mathrm{l} / \mathrm{s}$

5. Defining the pipe routing

Pipe layout has to be designed in co-ordination with the Architect and MEP Consultant

6. Design software schematic

Designer must input:

- Pipe lengths
- Pipe routes
- Flow rate into each outlet

ProPlanner design software will calculate:

- Pipe diameters
- Filling ratio water/air
- Flow velocity and flow rates
- Negative pressures
- System's capability to operate syphonically

Agenda

Introduction to Geberit
How siphonic drainage differs to conventional
How does siphonic rainwater drainage work ?
Elements of a siphonic system
Design of siphonic rainwater drainage
Summary

Summary

Siphonic rainwater drainage works differently to conventional

5

Siphonics use fewer outlets and less pipework

2
Uses negative pressure to operate with full pipework

Siphonics need careful design to work optimally for the building

Freedom in design, environmentally friendly, fast installation, self cleansing

4

System of outlets, pipe and bracketry and design software

Siphonic roof drainage is a wellestablished principle

Stay tuned..
(7. $\mathrm{CPD}{ }^{=}$Creating the ideal washroom environment
(4. $\mathrm{CPD} \equiv$ Bathroom design behind the wall
(7. $\mathrm{CPD} \equiv$ How to make it right - truth or rumour of precision carbon steel?
(17) $\mathrm{CPD}=$ Designing drainage without compromise BS EN 12056
(2. $\mathrm{CPD} \equiv$ Embedding acoustics into design
(4) $\mathrm{CPD} \equiv$ Siphonic rainwater systems

[^0]: See notes at the end of the document

